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q:= 13°34’

qe~=30”oo. (24)

The upper and lower bounds on the phase shifts obtained

by the quadratic Kato method [10] with the exact Z are

14°30< ‘qO<15°30’

31 °8’<q. <32018’.

IV. CONCLUSION

A formulation has been presented for determining

lower bounds on the phase shifts of dielectric obstacles in

irregular waveguides, Relatively close lower bounds have

been obtained with a simple trial function. This is to be

expected for this type of obstacle for the permittivity

value considered because the higher order evanescent

modes contribute little excess phase shift, Of course, the

bound may be improved by going to a better trial func-

tion with variational parameters, The extension to multi-

mode waveguides is immediate.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

J. Shwinger and D. S. Saxon, Discontinuities in Waveguides. New

York: Gordon and Breach, 1968.
A, Wexler, “Computation of electromagnetic fields; ZEEE Trans.

Microwave Theoiy Tech., vol. MTT-17, pp. 416-439, Aug. 1969.
L Aronson, K. Kalikstein, C. J. Kleimman, and L. Sprnch, “Varia-
tional bound principle for scattering of electromagnetic wavesby
obstaclesin a waveguide,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-18, pp. 725–731, C)ct. 1970.
K. Kalikstein, C. J. Kleintnan, L. Spruch, and L. Rosenberg,
“Construction of variational principles and variational bounds in
waveguide scattering; Proc. Inst. E1ec. Eng., vol. 124, pp. 31-37,
Jan. 1977.
R. Blau, L. Rosenberg, and L. Spruch, “Stationary bounds on
eigenphase shifts: Target wave functions imprecisely known,”
Phys Reu. , vol. 12, pp. 1859-1871, Nov. 1975.
F. Weinhold, “New formulas for lower bounds to expectation
values: Phys. Reu., vol. 183, pp. 142–147, July 1969.
D. P. Chong and F. Weinhold, “Lower bounds on expectation
values: Two electron atoms, Can, J. Chem., vol. 51, pp. 260-264,
Jan. 1973.
R. M. Bulley and J. B. Davies, “Computation of approximate
polynomial solutions to TE modes in arbitrarily shaped wave-
guides~ IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp.
440-446, Aug. 1969.
B. E. Spiefman and R. F. Barrington, “Waveguides of arbitrary
cross section by solution of a nonlinear integral eigenvalue equa-
tion: IEEE Trans. Microwaoe Theoty Tec~, vol~ MTT-20, ‘pp.
575-585, Sept. 1972.
R. Bartram ~nd L. Spruch, “Bounds on the elements of equivalent
networks for scattering in waveguides: 11—Application to dielec-
tric obstacles; J. AppZ. I&., vol. 31, pp. 913–917, May 1960.

Propagation of Magnetostatic Waves Along
Curved Ferrite Surfaces

NEERAJ C. SRIVASTAVA

Abstract-Ektronmgttetfc equations have been appropriately trans-
formed and solved in order to investigate the propagation of ntagnetustatic
waves in curved geometries. The reaufts have been utilised to study

magstetostatic propagation along the surface of a cylindrically curved slab
of ferrite in the asfmuthal direction. In the case of an unbacked- or a
metal-backed slab, it is found that the effeet of curvature is to sfightfy

reduce the phase as weff as the group velocity by a constant factor
throughout the frequency range of allowed modes. However, under favor-

able conditions, the presence of a dielectric layer between ferrite and metal
leads to a strong enhancement in the propagation constant. It is aJsofound
that an axially magnetized homogeneous ferrite eyfirufer cannot support
magttetostatic surface waves propagating along its curved srrrfaee in tfte
aaimuthal diiection.

I. INTRODUCTION

M AGNETOSTATIC wave propagation along curved

ferrite surfaces is an area of importance on account
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of its relevance to a variety of practical situations, e.g.,

magnetostatic surface wave resonant modes of a ferrite

slab with rounded edges [1], magnetic surface wave ring

interferometer [2] characterized by propagation along the

curved surface of a dielectric cylinder with ferrite sleeve,

projected magnetostatic waveguide bends [3], scattering of

electromagnetic waves by composite ferrite cylinders, etc.
While the effect of curvature on guided wave propagation

in hollow metallic [4], [5] and dielectric [6], [7] structures

has been investigated in the past, similar studies in the

case of ferntes are not available. In this paper, we have

investigated the effect of curvature on propagation char-

acteristics of magnetostatic surface waves in ferrites mag-

netized transverse to the direction of propagation. In

Section H, the electromagnetic equations have been ap-

propriately transformed and solved for the curved geome-

try. In Section III, the dispersion relation has been ob-

tained in the general case of magnetostatic wave propaga-

tion, in azimuthal direction, and in a cylindrically curved
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Fig. 1. The coordinate system.

slab of ferrite backed by a grounded layer of

The well known results [8]-[10] for the flat

follow as a special case when the radius of

dielectric.

geometry

curvature
approaches infinity. The cases of unbacked- and metal-

backed curved ferrite slabs and of homogeneous ferrite

cylinder have been specifically discussed. In the general

case, the results of numerical calculations have been pre-

sented in Section III-C. It is found that the presence of a

dielectric layer between the metallic cylinder and the

ferrite sleeve leads to resonant enhancement in the propa-

gation constant.

II. MAGNETOSTATIC SOLUTION

The magnetic field h of the magnetostatic modes is

described by the following equations:

Vxh=O; h=Vq

V.(p. h)=O (1)

where ~ is the magnetostatic potential and p represents

the permeability tensor of the ferrite magnetized along the

z axis. In Cartesian coordinates, ~ can be shown [11] to

satisfy the equation

[p(a’/ax’+a’/a)+a+az/]+=o+=o (2)

where p is the leading diagonal element of the permeabil-

ity tensor. Equation (2) may be expressed in a cylindrical

coordinate system (Fig. 1) as

where x = rcos 0 and y = r sinfl. It can be shown that p is

invariant under this transformation; the components of b

and /s are related as

[1=[+ ‘~ 1! ‘4)

where

and, for a lossless ferrite,

PERFECT
CONI+JCTOR

FERRITE

>Y

DIELECTRIC

Fig. 2. The geometry of problem: curved ferrite slab backed by
grounded dielectric.

HO(HO+4TMO) – (@/y)’
P =

H; – (@/y)’

1m140(o/y)
K=

H:– (@/y)’ “ (6)

In (6), HO, w, y, and 4TM0 represent the biasing field,

wave angular frequency, gyromagnetic ratio, and satura-

tion magnetization, respectively. A transformation is

made to variables ({, ~) defined by

J=R in (r/R), .$=Re (’7)

whence

Substitution from (7) and (8) in (3) leads to

[

~ a2a’

a[z 1—+exp (2~/R )5 y!@,&z) =0. (9)
a<2

In most practical situations, the RF field is uniform along

the dc magnetization (i.e., il/tlz = O), in which case the

magnetostatic potential for propagation along the curved

surface is given by

+=[Aexp(P~)+Bexp (-B{) ]exp(-iPO (10

where A and B are arbitrary constants. In problems

involving layered structures, one has to match the magne-

tostatic potential and the normal component of magnetic

induction at each interface. The latter is given by

bc=b, =~exp(–~/R)

.[(p+K)Aexp (BJ)-(p-~)Bexp (-P{) ]eXP(-iBC).

(1:1)

III. MAGNETOSTATIC SURFACE WAVES IN A CURVED

SLAB

A. Dispersion Relation

Consider the structure shown in Fig. 2 where R is the

inner radius of the curvature of the curved ferrite slab,

while d and h represent the thicknesses of the ferrite and
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dielectric, respectively. The metal-dielectric and dielec-

tric-ferrite interfaces are defined by

l= Rln(l-k/R)sJn (12)

and

{= Rln(l+d/R)sJ’d (13)

respectively. On ignoring the variation of the wave field

along the dc magnetization, the magnetostatic potential

fields in the dielectric, ferrite, and air regions are given by

@=[A exp(/3t)+B exp(-D{)] exp(-ii%) (14)

@=[Cexp (P{)+ llexp(-BJ)j exp(-ipf) (15)

~a=Fexp {B({.-{)} exp(-ip~). (16)

Here A, B, C, D, and F are arbitrary constants, From

(1 1), the normal components of magnetic induction

be written as

b~=~exp(-(/R)[A exp(~()-Bexp (-/3f)]

oexp (– i~$)

b/=pexp (–{/R)[(p+K)c exp(p{)–(p– K)D

. exp(–/30] exp (– i~g)

bg=-~Fexp(–~/R) exp{P(I~–r)}

.exp ( – i~~).

may

(17)

(18)

(19)

At the metal-dielectric interface (( = {~), the normal com-

ponent of magnetic induction should vanish and conse-

quently

At the dielectric-ferrite interface ({ = O), the matching of

$’s and bf’s results in

C+ D=A+B (21)

(p+ K) C-(p-K)D=A-B. (22)

At the ferrite-air interface ({= (d), field matching leads to

C exp ( ~&) + D exp (– ~{.) = F (23)

(lJ+~)CexP (~~d)-(p-K)D exp(-P~.)=-ll (24)

All arbitrary constants may be eliminated from (20)-(24)

to obtain the following dispersion relation for propagation
in forward ( + ~) as well as reverse ( —~) directions.

exp (2~Y id)

=(~~~-l)[(~f K+l)exp(2Pf(m)+(~f K-1)]

(PYK+l)[(pTfc- l)exP(2P,{m)+(p R+l)] “

(25)

B. Special Cases

1) Flat Surface: In this case, Rjco and ~~= R In(l +

d/R)+d, whereas ~~ = Rln(l – h/R)~ – h and (25) re-

duces, as expected, to the well known result for the

dielectric layered planar structure, as derived by

Bongianni [10], except for the notations.

2) Homogeneous Ferrite Cylinder: In this case, h = O

and d= – R; exp (2~JJe 1 and exp (2~fJ)~0. Conse-

quently, no magnetostatic wave modes are supported by

an axially magnetized, homogeneous ferrite cylinder,

along its curved surface, in the azimuthal direction.

In experiments on magnetostatic surface waves in

ferrite slabs with rounded edges, multiple round trip

echoes are also observed [1] along with the first delayed

MSSW signal. It is natural to conjecture [1] that a surface

wave of sufficiently small wavelength propagates along

the curvature to move to the other face of the slab and

thereafter propagate in the opposite direction. However,

according to the present analysis, such a wave cannot

propagate around the curvature as a mode and, therefore,

should be attenuated. This is quite understandable physi-

cally (at least in the case of small wavelengths) because a

wave of small wavelength does not “see” the curvature of

the ferrite and the latter behaves more or less like a flat

half space; it is easy to show that a transversely mag-

netized half space does not support magnetostatic surface

modes. Multiple echoes are observed in the experiment,

perhaps because the wave, though attenuated, is not com-

pletely absorbed in one trip, while propagating around the

curvature. A reduction in attenuation around the curva-

ture should lead to the observation of a larger number of

echoes. This may be achieved by inserting metallic or

dielectric latches near the rounded edges; a ferrite cylin-

der with a metallic or dielectric latch can indeed support

magnetostatic surface modes, as shown in what follows.

3) Dielectric Cylinder with Ferrite Sleeve: In this case,

h= R and hence ~~- – ce; the dispersion relation (25)

reduces to the following (reciprocal) form:

‘xp(z~+(d)- (w- K-l)(#+K-l)—

- (/J- K+l)(p+K+l) ‘f(~)” (26)

This is the same as that for a flat unbacked-ferrite slab [8],

[9], except for the presence of {~ instead of d. If /?Odenotes

the propagation constant in the absence of curvature

(other parameters unchanged), we have

exp (2&) =f(ti) = exp (2&d)

or

d/R
— ——

“P”- ln(l+d/R) > 1“
(27)

Similarly, it can be shown that

(da/d~) ln(l + d/R) < ~

(du/d/30) = d/R “
(28)

Clearly, the effect of curvature is to reduce the group

velocity as well as the phase velocity of MSSWS. How-

ever, when d is small ( <0.01 cm.), such as in the case of

the magnetic surface wave ring interferometer [2], we

obtain
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(B- Bo)/80= d/2R (29)

which is quite small for typical values of d and R. Thus

the effect of curvature would be insignificant unless d/R

>0.1.

4) Metallic Cylinder with Ferrite Sleeve: In this case,

h= O; ~~ = O and the dispersion relation (25) is trans-

formed into

which differs from the result derived earlier by Seshadri

[9] in the case of a flat grounded ferrite slab only in that ld

appears instead of d. The consequences are similar to that

for the case of the dielectric cylinder with a ferrite sleeve

as discussed above.

C. General Case

The expressions for

(6) into (25) to obtain

p and K may be substituted from

10

[

tl

fljlGHz) ~

Fig. 3. Variation of the fractional change in the propagation constanl

((8 – Po)/Po) ~fi frequency @(ewressed in G~) for V~OUS ~ck-
nesses of the dielectric layer. Other parameters are: Ho= 1.0 kG,
49rMo = 1.75 kG, y= 2.8 GHz/kG, d= 0.01 cm, and R= 1.0 cm.

We will discuss only the case when d<<R, which is of

interest to the ring interferometer [2]. When h is very

small or very large, we obtain, in the limit, the cases of

dielectric-ferrite and metal-ferrite cylinders discussed

above; the effect of curvature on propagation constant is

negligible. However, for intermediate values of h, /3 may

be significantly different from j30 even when d is small. To

investigate this possibility, we have made numerical in-

vestigations of (31) for a typical set of parameters for

YIG. It is found that the mode ~+ is practically un-

affected by variations in h and, hence, shows only a weak

dependence on R, given approximately by (29), However,

the mode ~. is strongly influenced by the presence of the

dielectric layer. Fig. 3 shows the fractional change in the

propagation constant /3, clue to curvature, for various

thicknesses (h) of the dielectric layer, For a given h, there

exists a frequency range in which the fractional change in

~ is significantly large. In particular, the peak value may

be orders of magnitude higher than the corresponding

fractional change in the cases of dielectric-ferrite and

metal-ferrite cylinders discussed in Section III-B. When h

is relatively large, the peaks occur in the low-frequency

region and the frequency bandwidth around the peak is

small. When h is reduced, the region of interest broadens

out and shifts towards higher frequencies. Moreover, the

peak height is reduced. mere is a critical value of h

(-0.07 cm., for the present case) for which the peak

fractional change in P is minimum (although still about 40

times the value for the cases of dielectric-ferrite and

metal-ferrite cylinders) whereas the bandwidth of interest,

around the peak, is maximum. When h is reduced beyond

the critical value, once again the peak height increases

and the region of interest narrows down, although it

-.

continues to shift towards higher frequencies. It is difficult

to physically interpret the nature of these curves. In the

limit of zero dielectric thickness, the fractional change in

@ reaches maximum when ti = Y(HO i- 2mMo), i.e., under

the condition of magnetic resonance; this result seems

plausible. However, for finite thickness of the dielectric, it

appears that redistribution of energy due to curvat twe is

responsible for the nature of these curves, A rigorous

electromagnetic analysis is required for a better under-

standing.

It is interesting to note that magnetostatic propagation

along curved surface does not lead to losses other than

absorption by the medium. This seems to violate the

general principle that curvature of a guiding structune

with a non-metallic boundary always leads to a radiation

loss [6]. This apparent anomaly is due to the fact that

magnetostatic approximation has been employed to ob-

tain the modes; a rigorous electromagnetic analysis to the

problem would certainly reveal losses due to curvature.

However, in the region away from the cutoff, where

magnetostatic approximation is approximately valid, the

curvature losses are expected to be negligibly small. This

is important from the view point of futuristic applications

in magnetostatic waveguide bends [3].

W. suMM’’m.Y

Magnetostatic equations have been rewritten in a suit-

able coordinate system and solved in the case of propagat-

ion along curved ferrite surfaces. It is found that an

axially magnetized, homogeneous ferrite cylinder does not

support magnetostatic surface waves propagating in the

azimuthal direction, along the curved surface. The rnagne-
tostatic modes of a thin, curved ferrite slab (unbacked oIr
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metal backed) are not significantly affected when the slab

thichess is a very small fraction of the radius of curva-

ture. However, the presence of a grounded layer of dielec-

tric cm the inner side of the slab leads to a resonant

efiancement in the fractional change in the propagation

ccmstant. k the region where magnetostatic approxima-

tion is approximately valid, the “curvature loss” is ex-

pected to be negligible.
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On the Resonant Frequency of a Reentrant
Cylindrical Cavity

MAREK JAWORSKI

Abstmct—A new efficient n&fIod determfnin g the resonant frequency
of a rwn&mt cy&Md cavity is suggeRted. The method is based on

mifiw ‘t& HeMolti equation within two cavity regions and matching the

Wlwtiom across & boundary surface. Contrary to sbniiar formulations
pnbkhd pmtiomly, the eontimdty conditions on the bmmdary are irn-

-d k a tigorom way. As a resui$ the solution is obtained in a form of
su-ive approtitiom converging to the exact resonant frequency
when a nmkr of iterations tend toward fofiity. Numerfcaf examplea are
given for a few rmatit cavities of typicaf dimensions. Comparfsnn fs also
@e with e_&enti data as weff as other theoretfcaf results.

1. MTRODUcTION

REENTMNTcylindrical cavities, widely used for a

number of years, have recently found a new applica-

tion in solid-state devices, particularly Gurm and tunnel

diode oscillators. Simultaneously, a renewed interest in

approximate methods determining the resonant frequency

of such cavities has been observed. In some applications it

is sufficient to consider a simple equivalent circuit, usually

based on TEM coaxial line and lumped capacitance

[1]-[5]. In general, however, more sophisticated methods

Manuscript received Aprif 27, 1977; revised August31, 1977.
TIM author is with the Institute of Physics, Polish Academy of Scien-

ces, 02-668 Warsaw, Poland.

are needed in order to evaluate the resonant frequency

with reasonable accuracy [6]–[9].

Recently, a new interesting approach has been sug-

gested by Williamson [9]. In his method, the magnetic

field in both regions of the reentrant cavity is excited by

the “aperture” electric field given on the interface r = a

(see Fig. 1). The resonant frequency is then found by

matching the magnetic fields across the interface arid

solving the appropriate transcendental equation.

The above formulation, being in fact an improvement

of Hansen’s approach [6], is numerically simple and pro-

vides more accurate results than the solutions published

previously. Nevertheless, the main disadvantage of both

Williamson’s and Hansen’s method is due to the fact that

the aperture field, which is generally not known, has to be

included in the transcendental equation. In the paper of

Williamson [9], the solution of the corresponding cylindri-

cal antenna problem has been suggested as a suitable

approximation for the electric field on the interface r = a.

Unfortunately, such an approximation is sufficiently ac-

curate for narrow-gap cavities only. Moreover, the solu-

tion of the antenna problem, as formulated for an un-

bounded region, may not be adequate for resonant sys-

tems, particularly in the cases when the outer diameter of
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