252
nZ=13°34

n.2=30°00". (24)
The upper and lower bounds on the phase shifts obtained
by the quadratic Kato method [10] with the exact € are

14°30' < 1, < 15°30

31°8' <7, <32°18".

1V. CoNcLUSION

A formulation has been presented for determining
lower bounds on the phase shifts of dielectric obstacles in
irregular waveguides. Relatively close lower bounds have
been obtained with a simple trial function. This is to be
expected for this type of obstacle for the permittivity
value considered because the higher order evanescent
modes contribute little excess phase shift. Of course, the
bound may be improved by going to a better trial func-
tion with variational parameters. The extension to multi-
mode waveguides is immediate.

(101

1EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-26, NO. 4, APRIL 1978

REFERENCES

[11 J. Shwinger and D. S. Saxon, Discontinuities in Waveguides. New
York: Gordon and Breach, 1968.

[2] A. Wexler, “Computation of electromagnetic fields,” IEEE Trans.
Microwave Theory Tech., vol. MTT-17, pp. 416-439, Aug. 1969.

[3]1 I Aronson, K. Kalikstein, C. J. Kleimman, and L. Spruch, “Varia-
tional bound principle for scattering of electromagnetic waves by
obstacles in a waveguide,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-18, pp. 725-731, Oct. 1970.

[4] K. Kalikstein, C. J. Kleinman, L. Spruch, and L. Rosenberg,
“Construction of variational principles and variational bounds in
waveguide scattering,” Proc. Inst. Elec. Eng., vol. 124, pp. 31-37,
Jan. 1977.

[51 R. Blau, L. Rosenberg, and L. Spruch, “Stationary bounds on
eigenphase shifts: Target wave functions imprecisely known,”
Phys. Rev., vol. 12, pp. 18591871, Nov. 1975.

[6] F. Weinhold, “New formulas for lower bounds to expectation
values,” Phys. Rev., vol. 183, pp. 142-147, July 1969.

[7] D. P. Chong and F. Weinhold, “Lower bounds on expectation
values: Two electron atoms, Can. J. Chem., vol. 51, pp. 260-264,
Jan. 1973.

[8] R. M. Bulley and J. B. Davies, “Computation of approximate
polynomial solutions to TE modes in arbitrarily shaped wave-
guides,” IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp.
440-446, Aug. 1969.

[9] B. E. Spielman and R. F. Harrington, “Waveguides of arbitrary

cross section by solution of a nonlinear integral eigenvalue equa-

tion,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp.

575-585, Sept. 1972.

R. Bartram and L. Spruch, “Bounds on the elements of equivalent

networks for scattering in waveguides: II—Application to dielec-

tric obstacles,” J. Appl. Phys., vol. 31, pp. 913-917, May 1960.

Propagation of Magnetostatic Waves Along
Curved Ferrite Surfaces

NEERAJ C. SRIVASTAVA

Abstract—Electromagnetic equations have been appropriately trans-
formed and solved in order to investigate the propagation of magnetostatic
waves in curved geometries, The results have been utilized to study
magnetostatic propagation along the surface of a cylindrically curved slab
of ferrite in the azimuthal direction. In the case of an unbacked- or a
metal-backed slab, it is found that the effect of curvature is to slightly
reduce the phase as well as the group velocity by a constant factor
throughout the frequency range of allowed modes. However, under favor-
able conditions, the presence of a dielectric layer between ferrite and metal
leads to a strong enhancement in the propagation constant. It is also found
that an axially magnetized homogeneous ferrite cylinder cannot support
magnetostatic surface waves propagating along its curved surface in the
azimuthal direction.

I. INTRODUCTION

M AGNETOSTATIC wave propagation along curved
ferrite surfaces is an area of importance on account

Manuscript received December 3, 1976; revised May 10, 1977. This
paper was supported in part by the National Science Foundation.

The author is with the Department of Physics, Indian Institute of
Technology, New Delhi, 110029, India.

of its relevance to a variety of practical situations, e.g.,
magnetostatic surface wave resonant modes of a ferrite
slab with rounded edges [1], magnetic surface wave ring
interferometer [2] characterized by propagation along the
curved surface of a dielectric cylinder with ferrite sleeve,
projected magnetostatic waveguide bends [3], scattering of
electromagnetic waves by composite ferrite cylinders, etc.
While the effect of curvature on guided wave propagation
in hollow metallic [4], [5] and dielectric [6], [7] structures
has been investigated in the past, similar studies in the
case of ferrites are not available. In this paper, we have
investigated the effect of curvature on propagation char-
acteristics of magnetostatic surface waves in ferrites mag-
netized transverse to the direction of propagation. In
Section II, the electromagnetic equations have been ap-
propriately transformed and solved for the curved geome-
try. In Section III, the dispersion relation has been ob-
tained in the general case of magnetostatic wave propaga-
tion, in azimuthal direction, and in a cylindrically curved

0018-9480/78 /0400-0252$00.75 ©1978 IEEE
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Fig. 1. The coordinate system.

slab of ferrite backed by a grounded layer of dielectric.
The well known results [8}-{10] for the flat geometry
follow as a special case when the radius of curvature
approaches infinity. The cases of unbacked- and metal-
backed curved ferrite slabs and of homogeneous ferrite
cylinder have been specifically discussed. In the general
case, the results of numerical calculations have been pre-
sented in Section III-C. It is found that the presence of a
dielectric layer between the metallic cylinder and the
ferrite sleeve leads to resonant enhancement in the propa-
gation constant.

II. MAGNETOSTATIC SOLUTION

The magnetic field 2 of the magnetostatic modes is
described by the following equations:

VXh=0; h=Vy

V.(p.h)=0 (1)
where ¢ is the magnetostatic potential and p represents
the permeability tensor of the ferrite magnetized along the
z axis. In Cartesian coordinates, i can be shown [11] to
satisfy the equation

[ 1(3%/3x'+32%/3y?)+0%/3z* [y =0 )

where p is the leading diagonal element of the permeabil-
ity tensor. Equation (2) may be expressed in a cylindrical
coordinate system (Fig. 1) as

10(,0), 100, 0%
{,u{ r 6r(r8r + r2 302}+ az?
where x=rcosf and y =rsing. It can be shown that p is

invariant under this transformation; the components of b
and 4 are related as

c(r,0,2)=0 (3)

b, p ik O]|h,
byl=|—ik n O||h 4)
b, 0 0 1||A
where
(i 1 &Y oy
=¥ -t = 5
b, or’ hy r 96’ h, 0z )

and, for a lossless ferrite,

PERFECT
CONDUCTOR

AIR

® FERRNE

DIELECTRIC

Fig. 2. The geometry of problem: curved ferrite slab backed by
grounded dielectric.

_ Hy(Ho+4nMo) - (w/7)
HE~(w/v)’
_ nM(/Y)
H=(w/v)" (6)
In (6), Hy, w, v, and 4wM, represent the biasing field,
wave angular frequency, gyromagnetic ratio, and satura-

tion magnetization, respectively. A transformation is
made to variables ({,£) defined by

¢=RIn(r/R), £=R0

(M
whence
D cop(-t/R)E, 1L cep(-t/R)L. ®
or o’ r o 0§
Substitution from (7) and (8) in (3) leads to
B2 e @/RL pse)=0. )
3 0g? az2 |7
In most practical situations, the RFfield is uniform along
the dc magnetization (i.e., 9/dz=0), in which case the

magnetostatic potential for propagation along the curved
surface is given by

y=[Aexp (BS)+Bexp (—B¢)]exp (—iBé) (10)

where A and B are arbitrary constants. In problems
involving layered structures, one has to match the magne-
tostatic potential and the normal component of magnetic
induction at each interface. The latter is given by

be=b,=pBexp (-$/R)
[(u+ ) exp (B)—(p—x)Bexp (— BE) Jexp (— iBE).
)

MAGNETOSTATIC SURFACE WAVES IN A CURVED
SLAB

IH.

A. Dispersion Relation

Consider the structure shown in Fig. 2 where R is the
inner radius of the curvature of the curved ferrite slab,
while d and A represent the thicknesses of the ferrite and
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dielectric, respectively. The metal-dielectric and dielec-
tric-ferrite interfaces are defined by

{=RIn(l-h/R)=g, (12)
and
¢=RIn(l+d/R)=¢, (13)

respectively. On ignoring the variation of the wave field
along the dc magnetization, the magnetostatic potential
fields in the dielectric, ferrite, and air regions are given by

Y?=[A exp (B)+Bexp (- Bt)] exp (—iBE) (14)
Y/=[Cexp (B)+Dexp(—B)] exp (—iBE) (15)
ye=Fexp { B(§;,~ )} exp (—iB¥). (16)
Here A, B, C, D, and F are arbitrary constants. From

(11), the normal components of magnetic induction may
be written as

bf'=Bexp (—§/R)[ A exp (BS)— B exp (— )]
-exp (—iBg) (17)

b{=Bexp (—§/R)[(n+r)Cexp (B)~(p~x)D
-exp(— B¢)] exp (—iBE) (18)

bf=—BFexp (—{/R)exp { B($,— )}
-exp (—iB§). (19)

At the metal-dielectric interface ({=¢,,), the normal com-
ponent of magnetic induction should vanish and conse-
quently

A exp (B§,,) =B exp (— B§,,)- (20)

At the dielectric-ferrite interface ({=0), the matching of
¥’s and b,’s results in

C+D=A+B 21
(p+e)C—(p—x)D=A—B. (22)

At the ferrite-air interface (= ¢,), field matching leads to
Cexp (B{)+Dexp (= B8,)=F (23)

(p+r)Cexp (B,)—(n—x)D exp (—B)=—F. (24)
All arbitrary constants may be eliminated from (20)-(24)

to obtain the following dispersion relation for propagation
in forward (+¢£) as well as reverse (—£) directions.

exp (2814,
_(pFe—D[(pxr+1) exp (28.8,) +(pxr—1)]
C(pEeHD[(pFr—1) exp (2B:5,) +(pFa+1)]

(25)

B. Special Cases

1) Flat Surface: In this case, R—o0 and {,=RIn(l+
d/R)—d, whereas {,,=RIn(1—h/R)—>—h and (25) re-
duces, as expected, to the well known result for the
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dielectric layered planar structure, as derived by
Bongianni [10], except for the notations.

2) Homogeneous Ferrite Cylinder: In this case, h=0
and d=—R; exp (28f,)—1 and exp (28¢,)—0. Conse-
quently, no magnetostatic wave modes are supported by
an axially magnetized, homogeneous ferrite cylinder,
along its curved surface, in the azimuthal direction.

In experiments on magnetostatic surface waves in
ferrite slabs with rounded edges, multiple round trip
echoes are also observed [1] along with the first delayed
MSSW signal. It is natural to conjecture [1] that a surface
wave of sufficiently small wavelength propagates along
the curvature to move to the other face of the slab and
thereafter propagate in the opposite direction. However,
according to the present analysis, such a wave cannot
propagate around the curvature as a mode and, therefore,
should be attenuated. This is quite understandable physi-
cally (at least in the case of small wavelengths) because a
wave of small wavelength does not “see” the curvature of
the ferrite and the latter behaves more or less like a flat
half space; it is easy to show that a transversely mag-
netized half space does not support magnetostatic surface
modes. Multiple echoes are observed in the experiment,
perhaps because the wave, though attenuated, is not com-
pletely absorbed in one trip, while propagating around the
curvature. A reduction in attenuation around the curva-
ture should lead to the observation of a larger number of
echoes. This may be achieved by inserting metallic or
dielectric latches near the rounded edges; a ferrite cylin-
der with a metallic or dielectric latch can indeed support
magnetostatic surface modes, as shown in what follows.

3) Dielectric Cylinder with Ferrite Sleeve: In this case,
h=R and hence {,,——o0; the dispersion relation (25)
reduces to the following (reciprocal) form:

(p=r=D)(p+r=1) _
=f(w).

(p—r+D(p+x+1)

This is the same as that for a flat unbacked-ferrite slab [8],

[9], except for the presence of {, instead of 4. If B, denotes

the propagation constant in the absence of curvature
(other parameters unchanged), we have

exp (288, )=f(w)=exp (28,d)

exp (2B.8,)= (26)

or
_ d/R
Bl b= iy & @7)
Similarly, it can be shown that
dw/d 1 d
(do/dB) _(1+d/R) o8

(dw/dBy) d/R
Clearly, the effect of curvature is to reduce the group
velocity as well as the phase velocity of MSSW’s. How-
ever, when d is small (<0.01 cm.), such as in the case of
the magnetic surface wave ring interferometer [2], we
obtain



SRIVASTAVA! PROPAGATION ALONG FERRITE SURFACES

(B—Bo)/Bo=d/2R (29)
which is quite small for typical values of d and R. Thus
the effect of curvature would be insignificant unless d/R
=0.1.

4) Metallic Cylinder with Ferrite Sleeve: In this case,
h=0; {,=0 and the dispersion relation (25) is trans-
formed into

(p¥K-D(pxK)

exp(2B.8,)= (p=K+1)(pFK)

g.(w) (30)

which differs from the result derived earlier by Seshadri
[9] in the case of a flat grounded ferrite slab only in that §,
appears instead of d. The consequences are similar to that
for the case of the dielectric cylinder with a ferrite sleeve
as discussed above.

C. General Case

The expressions for p and K may be substituted from
(6) into (25) to obtain
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Fig. 3. Variation of the fractional change in the propagation constant
((B— By)/ By) with frequency w (expressed in GHz) for various thick-
nesses of the dielectric layer. Other parameters are: Hy=1.0 kG,
4nMy=1.75 kG, y=2.8 GHz/kG, d=0.01 ¢m, and R=1.0 cm.

(2aMo)? 4+ 27 Moy Hy+ 27MyF w/v) exp (28 &)

exp(2B.{4)=

We will discuss only the case when d< R, which is of
interest to the ring interferometer [2]. When h is very
small or very large, we obtain, in the limit, the cases of
dielectric-ferrite and metal-ferrite cylinders discussed
above; the effect of curvature on propagation constant is
negligible. However, for intermediate values of #, 8 may
be significantly different from S, even when 4 is small. To
investigate this possibility, we have made numerical in-
vestigations of (31) for a typical set of parameters for
YIG. It is found that the mode B, is practically un-
affected by variations in 4 and, hence, shows only a weak
dependence on R, given approximately by (29). However,
the mode S_ is strongly influenced by the presence of the
dielectric layer. Fig. 3 shows the fractional change in the
propagation constant B, due to curvature, for various
thicknesses (k) of the dielectric layer. For a given A, there
exists a frequency range in which the fractional change in
B is significantly large. In particular, the peak value may
be orders of magnitude higher than the corresponding
fractional change in the cases of dielectric-ferrite and
metal-ferrite cylinders discussed in Section II1I-B. When A
is relatively large, the peaks occur in the low-frequency
region and the frequency bandwidth around the peak is
small. When # is reduced, the region of interest broadens
out and shifts towards higher frequencies. Moreover, the
peak height is reduced. There is a critical value of A
(~0.07 cm., for the present case) for which the peak
fractional change in B8 is minimum (although still about 40
times the value for the cases of dielectric-ferrite and
metal-ferrite cylinders) whereas the bandwidth of interest,
around the peak, is maximum. When 4 is reduced beyond
the critical value, once again the peak height increases
and the region of interest narrows down, although it

[(H0+277M0)2—(w/y)2] +2mMy(Ho+27MyF 0/ v) exp (2B.8,)

3h

continues to shift towards higher frequencies. It is difficult
to physically interpret the nature of these curves. In the
limit of zero dielectric thickness, the fractional change in
B reaches maximum when w=vy(Hy+27M,), i.e., under
the condition of magnetic resonance; this result seems
plausible. However, for finite thickness of the dielectric, it
appears that redistribution of energy due to curvature is
responsible for the nature of these curves. A rigorous
electromagnetic analysis is required for a better under-
standing. ‘

It is interesting to note that magnetostatic propagation
along curved surface does not lead to losses other than
absorption by the medium. This seems to violate the
general principle that curvature of a guiding structure
with a non-metallic boundary always leads to a radiation
loss [6]. This apparent anomaly is due to the fact that
magnetostatic approximation has been employed to ob-
tain the modes; a rigorous electromagnetic analysis to the
problem would certainly reveal losses due to curvature.
However, in the region away from the cutoff, where
magnetostatic approximation is approximately valid, the
curvature losses are expected to be negligibly small. This
is important from the view point of futuristic applications
in magnetostatic waveguide bends [3].

IV. SuMMARY

Magnetostatic equations have been rewritten in a suit-
able coordinate system and solved in the case of propaga-
tion along curved ferrite surfaces. It is found that an
axially magnetized, homogeneous ferrite cylinder does not
support magnetostatic surface waves propagating in the
azimuthal direction, along the curved surface. The magne-
tostatic modes of a thin, curved ferrite slab (unbacked or
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metal backed) are not significantly affected when the slab
thickness is a very small fraction of the radius of curva-
ture. However, the presence of a grounded layer of dielec-
tric on the inner side of the slab leads to a resonant
enhancement in the fractional change in the propagation
constant, In the region where magnetostatic approxima-
tion is approximately valid, the “curvature loss” is ex-
pected to be negligible.
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On the Resonant Frequency of a Reentrant
Cylindrical Cavity

MAREK JAWORSKI

Abstrace—A new efficient method determining the resonant frequency
of a reentrant cylindrical cavity is suggested. The method is based on
solving the Helmholtz equation within two cavity regions and matching the
solutions across the boundary surface. Contrary to similar formulations
published previously, the continuity conditions on the boundary are im-
posed in a rigoreus way. As a result, the solution is obtained in a form of
successive approximations converging to the exact resonant frequency
when a number of iterations tend toward infinity, Numerical examples are
given for a few reentrant cavities of typical dimensions. Comparison is also
made with experimental data as well as other theoretical results,

1. INTRODUCTION

) EENTRANT cylindrical cavities, widely used for a
v number of years, have recently found a new applica-
tion in solid-state devices, particularly Gunn and tunnel
diode oscillators. Simultaneously, a renewed interest in
approximate methods determining the resonant frequency
of such cavities has been observed. In some applications it
is sufficient to consider a simple equivalent circuit, usually
based on TEM coaxial line and lumped capacitance
[1}H3]. In general, however, more sophisticated methods
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The author is with the Institute of Physics, Polish Academy of Scien-
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are needed in order to evaluate the resonant frequency
with reasonable accuracy [6]-[9].

Recently, a new interesting approach has been sug-
gested by Williamson [9]. In his method, the magnetic
field in both regions of the reentrant cavity is excited by
the “aperture” electric field given on the interface r=a
(see Fig. 1). The resonant frequency is then found by
matching the magnetic fields across the interface and
solving the appropriate transcendental equation.

The above formulation, being in fact an improvement
of Hansen’s approach [6], is numerically simple and pro-
vides more accurate results than the solutions published
previously. Nevertheless, the main disadvantage of both
Williamson’s and Hansen’s method is due to the fact that
the aperture field, which is generally not known, has to be
included in the transcendental equation. In the paper of
Williamson [9], the solution of the corresponding cylindri-
cal antenna problem has been suggested as a suitable
approximation for the electric field on the interface r=a.
Unfortunately, such an approximation is sufficiently ac-
curate for narrow-gap cavities only. Moreover, the solu-
tion of the antenna problem, as formulated for an un-
bounded region, may not be adequate for resonant sys-
tems, particularly in the cases when the outer diameter of
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